Introduction to micronutrient fortified rice

Kumiko Takanashi, R.D., Ph.D.
ILSI Japan

February 2018
Contents

1. Introduction of ILSI Japan
2. ILSI’s Project IDEA
3. Rice fortification technology
4. Micronutrient situation and Dietary behaviors of women of reproductive age
5. Workplace Nutrition Project in Cambodia
ILSI and ILSI Japan
International Life Sciences Institute Japan

- ILSI: Founded in 1978 (Washington, D.C.)
- Nonprofit, worldwide organization
- 17 Regional branches

- ILSI Japan: Funded in 1981 (NPO in 2001)
- Supporting companies: 63 food, pharmaceutical and chemical companies

- Four thematic areas provide focus:
 - Nutrition, health and well-being
 - Food and water safety
 - Sustainable agriculture and nutrition security
 - Toxicology and risk science

- Scientists from:
 - Academia
 - Government
 - Industries

gather in a neutral forum to advance scientific understanding
Began in 1997 as a focused effort to reduce the global problem of iron deficiency through food fortification

Aims to reduce iron deficiency anemia by adding iron to commonly-consumed and commercially-produced condiments and staples based on the dietary patterns unique to each country

Consists of research efforts from technology development to implementation

Has been implemented in five countries: China, Vietnam, Cambodia, the Philippines and India.
Condiment fortification

<table>
<thead>
<tr>
<th>Country</th>
<th>China</th>
<th>Vietnam</th>
<th>Cambodia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partner</td>
<td>China CDC</td>
<td>NIN</td>
<td>RACHA</td>
</tr>
<tr>
<td>Food</td>
<td>Soy sauce</td>
<td>Fish sauce</td>
<td>Fish / Soy sauce</td>
</tr>
<tr>
<td>Fortificant</td>
<td>NaFeEDTA</td>
<td>NaFeEDTA</td>
<td>NaFeEDTA</td>
</tr>
<tr>
<td>Progress</td>
<td>- Stability</td>
<td>- Stability</td>
<td>- Stability</td>
</tr>
<tr>
<td></td>
<td>- Efficacy</td>
<td>- Efficacy</td>
<td>- Efficacy</td>
</tr>
<tr>
<td></td>
<td>- Effectiveness</td>
<td>- Effectiveness</td>
<td>- Effectiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A mandatory standard for iron fortified fish sauce and soy sauce was issued in 2015</td>
</tr>
</tbody>
</table>
Staple food fortification

<table>
<thead>
<tr>
<th>Country</th>
<th>Philippines</th>
<th>Vietnam</th>
<th>India</th>
<th>Cambodia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partner</td>
<td>FNRI</td>
<td>NIN</td>
<td>St. John’s Research Institute</td>
<td>RACHA</td>
</tr>
<tr>
<td>Food</td>
<td>Rice</td>
<td>Rice</td>
<td>Rice</td>
<td>Rice</td>
</tr>
<tr>
<td>Fortificant</td>
<td>Micronized ferric pyrophosphate</td>
<td>Iron and Zinc</td>
<td>Iron, lysine and others</td>
<td>Zinc, Folic Acid, thiamin</td>
</tr>
<tr>
<td>Progress</td>
<td>- Stability</td>
<td>- Stability</td>
<td>- Pilot study on lysine and iron</td>
<td>- Preliminary study in May 2017</td>
</tr>
<tr>
<td></td>
<td>- Efficacy</td>
<td>- Efficacy</td>
<td>- Estimation of lysine intake</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Effectiveness</td>
<td>- Effectiveness</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Market trial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Regional-wide launch in Mindanao Island in 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rice Fortification Process

The first step

Rice power, micronutrients and others

Mix → Extruder → Premix rice (4mgFe/g)

The second step

Blending premix rice with ordinary rice at a ratio of 1:200

→ Fortified rice (2mgFe/100g)
Fortificants of Taiyo Kagaku

- Minerals (iron and zinc)
 - Super dispersion technology
 - High bioavailability
 - High stability
 - Minimize color change
 - No unpleasant flavor

The Cost of Rice Fortification

- Estimated incremental cost of fortifying rice
 - A 1.5-10% increase in the current retail price of rice

 [Muthayya 2012 and Milani 2014]

- Affordability
 - Consumers in the Philippines accept a 5% increase in the current retail price of rice

 [Agdeppa 2011]
Micronutrient deficiencies

• Micronutrient (vitamin and mineral) deficiency affects more than 2 billion people globally

In Cambodia

• The most important micronutrients in global public health and their prevalence among women of reproductive age in Cambodia

[CDHS 2014, UNICEF 2015]

<table>
<thead>
<tr>
<th>Significant Public Health problems</th>
<th>Not significant public health problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Zinc: 62.8%</td>
<td>✓ Vitamin A: 3.2%</td>
</tr>
<tr>
<td>✓ Folate: 19.2%</td>
<td>✓ Iron: 2.6%</td>
</tr>
<tr>
<td>✓ Thiamin (vitamin B1): 18.0-38.0%</td>
<td></td>
</tr>
<tr>
<td>✓ Iodine: 78.0%</td>
<td></td>
</tr>
</tbody>
</table>
Health consequences of micronutrient deficiencies

- **Mothers and children**: increased maternal mortality, prematurity, early neonatal mortality
- **Young children**: delays in physical and cognitive development
- **Adults**: reduced physical endurance and productivity

Etiology of micronutrient deficiencies

- Inadequate dietary intake
- Poor dietary diversity
- Others: Infections, genetic, etc
Poor dietary habits of women of reproductive age

- High consumption of rice often reflects,
- Poor dietary diversity which results in,
- A high risk of micronutrient deficiencies
- Lower priority on meal times

Garment factory workers

- have limited time for lunch, thus,
- Consume sugary desserts or packaged food as snacks and/or meals

[FNG-WFP, 2017]
Nutrition Policies

• Sustainable Development Goals: Goal 2
 End hunger, achieve food security and improved nutrition and promote sustainable agriculture (2016-2030)

• Cambodia: National Strategy for Food Security and Nutrition 2014-2018
 Council for Agricultural and Rural Development (CARD)
 ✓ Objective 2: Improve use and utilization of food
 ✓ iii Expand fortification of food
Workplace Nutrition Project in Cambodia

Objective:
To improve the nutritional status of female factory workers by providing fortified rice at lunch time and nutrition education

- Rice fortification
 - Vehicle: Rice (823g of cooked rice /day /person)
 - Fortificants: Zinc, Folic acid and Thiamin
 - Population group: Women of reproductive age

- Nutrition education
 - Improve dietary diversity (Minimum Dietary Diversity for Women)
 - Improve general knowledge of nutrition
Partners

• Ministry of Planning - NSCFF
• GMAC
• Reproductive and Child Health Alliance (RACHA)
• Nutrition Japan Public Private Platform (NJPPP)
• International Life Sciences Institute Japan (ILSI Japan)
• Taiyo Kagaku Co., Ltd.
• DSM Japan K.K.
Business Model

Factories in Cambodia

Fortified rice at lunch time

On-site mixing
Producing Fortified Rice

FNRI in the Philippines
Producing Premix Rice

Taiyo Kagaku / DSM
Selling micronutrients

Nutrition education

Increasing productivity
Reducing the rate of absenteeism
Improving nutritional status

ILSI Japan / RACHA
Developing nutrition education modules

Increasing the sales of micronutrients
Schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>Activities</th>
</tr>
</thead>
</table>
| 2017 | Feasibility study
✓ Identifying partners
✓ Discussion with partners on the project
✓ Economic study |
| 2018 | Pilot study
✓ Producing premix rice and fortified rice
✓ Blending test (homogeneity)
✓ Storage test
✓ Developing nutrition education modules |
| 2019 | ✓ Effectiveness study (1 year) |
| 2020 | Implementation
✓ Advocacy
✓ Implementation of the rice fortification and nutrition education program in factories |